GLYCOSIDES OF (+)-SYRINGARESINOL AND 2-METHYLBUT-3-EN-2-YL β -D-GLUCOPYRANOSIDE FROM THE LEAVES OF

Nolina microcarpa

G. V. Shevchuk, A. S. Shashkov, and V. Ya. Chirva

UDC 547.99:543.422

Two furofuranoid lignan glycosides, having the structures of (+)-syringaresinol 4',4''-di- β -D-glucopyranoside (1) and (+)-syringaresinol 4'- β -D-glucopyranoside (2), and also 2-methylbut-3-en-2-yl β -D-glucopyranoside (3), have been isolated from an extract of the leaves of Nolina microcarpa (fam. Dracaenaceae).

As a result of the separation of the total extractive substances of the leaves of *Nolina microcarpa* (fam. Draceanaceae), together with compounds of the spirostan and furostan series [1], we have isolated three substances of nonsteroid nature. The present paper is devoted to the proof of the structures of these compounds.

On a thin-layer chromatogram, substances (1) and (2) were colored violet by vanillin/phosphoric acid, and compound (3) blue.

On the basis of an analysis of PMR and 13 C NMR spectra, components (1) and (2) were assigned to the furofuranoid lignan glycosides [2]. In their electron-impact mass spectra the most intense peak in each case, with m/z 418, corresponded to M - 2H for (\pm)-syringaresinol [3, 4].

In the PMR and ¹³C NMR spectra there were signals corresponding to the protons and carbon atoms of a *D*-glucose residue (Tables 1 and 2). The values of the spin-spin coupling constants (SSCCs) ($J_{1,2} = 7.0$ Hz) showed the β -configuration of the glycosidic bonds.

On the basis of spectral characteristics and physicochemical constants, the more polar substance (1) was identified as the symmetrical diglucoside of (+)-syringaresinol — liriodendrin, isolated from *Liriodendron tulipifera* [3] and *Penstemon deustus* [4].

Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 752-756, November-December, 1994. Original article submitted March 14, 1994.

TABLE 1. Chemical Shifts of the Protons (δ , ppm, 0 — TMS) and Spin-spin Coupling Constants (J, Hz) of (+)-Syringaresinol 4',4''-Di- β -D-glucopyranoside and (+)-Syringaresinol 4'- β -D-Glucopyranoside (2) (DMSO)

•	Compound			
Proton	ı	2		
11-1	3.08 m	3.01 m		
H-5	3.08 m	3.06 m		
11-2	4.65 d J _{1.2} =4.0	4.60 d J _{1.2} =4.0		
H-6	4.65 d J _{5.6} =4.0	4.66 d J _{5.6} =4.0		
H-4 .eq.	$3.81 \text{ dd } 1_{4c,4a} = 9.0 1_{4c,5} = 3.5$	3 80 dd J _{4e,4a} =9 0 J _{4e,5} =3.5		
11-8 eq.	$3.81 \text{ dd } J_{8e,8a} = 9 \text{ () } J_{8e,1} = 3.5$	3.80 dd J _{8e,8a} =9.0 J _{8e,1} =3.5		
11-4 .ax.	4 18 dd J _{4a.5} =6.5	4.16 dd J _{4a.5} =6.5		
11-8 ax.	4.18 dd J _{84.1} =6.5	4 16 dd 3 _{8a.1} ≈6.5		
H-21, H=61	6.64 S	6.66 \$		
H-2", H-6"	6.64 \$	6.58 S		
оси3	3.76 S	3.74 s		
осн ₃ "	3.76 S	3.72 s		
	β-D-Glucopyranose resid	iue		
11-1	4.86 d J _{1.2} =7.0	4.67 d J _{1,2} =7.0		
11-2	3.90 dd $J_{2,3}=9.0$	3.85 dd J _{2,3} =9 (1		
11-3	4 20 m	4.24 m		
11-4	4.02 t J _{4.5} =8.5	4.05 t J _{4.5} =8.5		
11-5	3.80 m	3.84 m		
11-6	4.22 m	4.30 m		
11-6	4.44 m	4,48 m		

TABLE 2. Chemical Shifts of the 13 C Carbon Atoms of (+)-Syringaresinol 4',4''-Di- β -D-glucopyranoside and (+)-Syringaresinol 4'- β -D-Glucopyranoside (2) (DMSO, ppm, 0 — TMS)

C-Atom	Compound			Compound	
	ı	2	- C-Atom	ı	2
1	5.5.7	53.7		β-D-Glucopyranose	
2	$\delta^{<}.2$	85.2	1	102.8	102.8
4	71.5	71.4	2	74.3	74.3
5	53.7	53.8	3	76.6	76.6
6	85.2	85.5	4***	70.0	70.0
8	71.5	71.4	5	77.3	77.3
			6	61.0	0.10
1'	133.8	133.8			
2	104.3	104.3			
3"	152.8	152.8			
4'	137.4	137 4			
5'	152.8	152.8			
6'	104.3	104.3			
1"	133.8	133.8			
2"	104.3	103.8			
3"	152.8	148.1			
4"	137.4	131.6			
5"	152.8	148.1			
6"	104.3	103.8		!	
эсн ₃	56.5	56.5		:	
DCH3"	56.5	56.2			

The diequatorial configuration of the phenyl fragments followed from the fact that the benzyl protons resonated at 4.65 ppm, with a SSCC of 4 Hz (Table 1). The chemical shift of the C-2 and C-6 carbon atoms — 85.2 ppm — and that of C-1' and C-1'' — 133.8 ppm (Tables 2) — coincided with the corresponding values in the diequatorial structure of (+)-syringaresinol [2, 4].

On partial acid hydrolysis, compound (1) formed a less polar substance identical with component (2). Consequently, compound (2) was (+)-syringaresinol 4'- β -D-glucopyranoside, this conclusion being in harmony with the NMR spectra (Tables 1 and 2). This is the first time that a substance having the structure of component (2) has been isolated from plant raw material.

The epimer of compound (1), (-)-syringaresinol 4',4''-di- β -D-glucopyranoside, which was called eleutheroside E, has been isolated previously from *Acanthopanax senticosus* [5]. In addition, eleutheroside E and (-)syringaresinol 4'- β -D-glucopyranoside have been isolated from *Viscum album* [6].

After the acid hydrolysis of component (3), glucose was detected in the solution. The treatment of glucoside (3) with acetic anhydride in pyridine gave the tetraacetate (4). A comparison of the physicochemical constants of substances (3) and (4) with those for a glucoside from *Ferula loscosii* and its acetate [7] and also an analysis of the spectral characteristics of compound (3) enabled it to be identified as 2-methylbut-3-en-2-yl β -D-glucopyranoside.

EXPERIMENTAL

General Observations. Thin-layer chromatography was conducted on Silufol plates. For column chromatography we used silica gel with particle sizes of 10-100 μ m and 60-100 μ m. The following solvent systems were employed: 1) chloroform—methanol (20:1); 2) chloroform—methanol—water (a — 65:10:1; b — 65:15:2; c — 65:22:4); and 3) benzene—methanol (50:1).

IR spectra were taken on a UR-20 instrument in tablets with KBr. Mass spectra were determined on a MKh 1310 instrument at an ionizing voltage of 50-70 V. NMR spectra were obtained on WM-250 and AM-300 instruments (Bruker). The solvents were DMSO and C_5D_5N . 0 — TMS.

Melting points were determined on a Boetius instrument, and optical rotations on a Zeiss polarimeter in a tube 0.5 dm long.

- (+)-Syringaresinol 4',4''-Di-β-D-glucopyranoside (1). The individual compound (1) (125 mg) was isolated by column chromatography of fractions enriched with this component in system 2b (TLC in system 2c). The yield was 0.0028% (yields here and below have been calculated on the weight of the freshly gathered plant). $C_{34}H_{46}O_{18}$; mp 262-264°; [α]_D²⁰-16.0 \pm 2° (c 0.5; pyridine). IR spectrum (KBr, ν , cm⁻¹): 820, 860, 900, 1240, 1600 (aromatic ring), 3200-3600 (OH). According to the literature [4]: mp 265-266°C [α]_D²⁵-12.1°. Details of the PMR and ¹³C NMR spectra are given in Tables 1 and 2.
- (+)-Syringaresinol 4'- β -D-Glucopyranoside (2). Compound (2) (80 mg) was obtained by column chromatography in system (1). Yield 0.0018%; $C_{28}H_{36}O_{12}$; mp 96-98°; $[\alpha]_D^{20}-24.6\pm2^\circ$ (c 0.55; pyridine). IR spectrum (KBr, ν , cm⁻¹): 840, 1230, 1600 (aromatic ring), 3200-3600 (OH). Details of the PMR and ¹³C NMR spectra are given in Tables 1 and 2.
- **2-Methylbut-3-en-2-yl** β -D-Glucopyranoside (3). Column chromatography in system 2a followed by recrystallization from acetone gave 500 mg of glycoside (3). Yield 0.11%: $C_{11}H_{20}O_6$; mp 135-136°C (acetone); $[\alpha]_D^{22} -21.5 \pm 2^\circ$ (c 1.00; pyridine. According to the literature: [7]: mp 135-136°, $[\alpha]_D^{20} -25^\circ$.

PMR spectrum of (3) $(\delta, 0-TMS, C_5D_5N)$: 1.40 (3H, s, CH₃), 1.48 (3H, s, CH₃), 5.08 (1H, dd, J_{4a,4b} = 1.3 Hz, H-4a), 5.15 (1H, dd, H-4B), 6.18 (1H, dd, J_{3,4a} = 18.0 Hz, J_{3,4b} = 11.0 Hz, H-3), 4.88 (1H, d, J_{1,2} = 7.5 Hz, H-1'), 3.65 (1H, t, J_{2,3} = 7.5 Hz, H-2'). ¹³C NMR spectrum of 3 (ppm, 0-TMS, C₅D₅N): 26.7, 28.1 (2CH₃), 77.8 (C-2), 113.5 (C-4), 145.4 (C-3), 62.9 (C-6'), 71.8 (C-4'), 75.3 (C-2'), 78.1 (C-3'), 78.8 (C-5'), 99.8 (C-1').

2-Methylbut-3-en-2-yl β -D-Glucopyranoside Tetraacetate (4). A solution of 200 mg of compound (3) in 4 ml of pyridine was treated with 2 ml of acetic anhydride and the mixture was left in a dark place for 14 h (TLC in system 4). Then it was poured into ice water, and the precipitate was filtered off and dried; after recrystallization 180 mg of the tetraacetate (4) was obtained: $C_{19}H_{28}O_{10}$, mp 111-112°C (acetone—hexane), $[\alpha]_D^{24}$ -7.8 \pm 2° (c 1.25; chloroform). According to the literature [7]: mp 113-114°C, $[\alpha]_D^{25}$ -6°.

REFERENCES

- G. V. Shevchuk, Yu. S. Vollerner, A. S. Shashkov, and V. Ya. Chirva, Khim. Prir. Soedin., 672, 678 (1991); G. V. Shevchuk, Yu. S. Vollerner, A. S. Shashkov, M. B. Gorovits, and V. Ya. Chirva, Khim. Prir. Soedin., 801 (1991); G. V. Shevchuk, Yu. S. Vollerner, A. S. Shashkov, M. B. Gorovits, and V. Ya. Chirva, Khim. Prir. Soedin., 218 (1992).
- 2. P. K. Agrawal and R. S. Thakur, Magn. Reson. Chem., 23, 389 (1985).
- 3. E. E. Dickey, J. Org. Chem., 23, 179 (1958).
- 4. S. D. Jolad, J. J. Hoffmann, J. R. Cole, M. S. Tempesta, and R. B. Bates, J. Org. Chem., 45, 1327 (1980).
- 5. H. Wagner, Y. H. Heur, A. Obermeier, G. Tittel, and S. Bladt, Planta Med., 44, 193 (1982).
- 6. H. Wagner, B. Feil, O. Seligmann, and Z. Kalogiera, Planta Med., 102 (1986).
- 7. M. Pinar and M. Martin-Lomas, Phytochemistry, 16, 281 (1977).